If you need a more accessible version of this website, click this button on the right. Switch to Accessible Site

WARNING

You are using an outdated browser. Please upgrade your browser to improve your experience.

Close [x]

Instagram icon

What is Bioenergy Ribose™ ?

Energy to Power Metabolic Health Wellness­

Like a computer, your body needs energy to keep running. Energy keeps your heart beating, your muscles contracting, and your brain and nervous system carrying the messages that synchronize the functions of life. For the most vital task of making the energy you need, your body produces ribose.

D-Ribofuranose (D-ribose, or simply ribose) is a five-carbon monosaccharide that is made in every cell in your body. Ribose stimulates the metabolic pathway used by the body to make a class of compounds called purines and pyrimidines. These compounds are essential for the body's production of many vital constituents, including the genetic material DNA and RNA, and the vital energy compound adenosine triphosphate (ATP). ATP is called the "energy currency" of the cell because it gives our bodies the power to function, survive, and thrive.

ATP is critical to health and a healthy lifestyle, and ribose is the essential component in the making of ATP in the body.

Optimizing Energy

Age, illness, strenuous or infrequent exercise, overexertion, or a host of metabolic disorders can seriously drain ATP reserves from your cells and tissues. And that can leave you fatigued, sore, weak, and drained of energy.

To replace this lost energy, your body needs ribose. Ribose forms the structural backbone of ATP, and is the starting point for the synthesis of ATP in the body. Unfortunately, most cells in your body, including heart and muscle cells, lack the metabolic machinery to make ribose quickly or efficiently. Because your body produces ribose at such an extremely slow rate, any one of these health or physiological factors can leave your ATP levels in short supply.

In normal, healthy tissue, several days of rest will allow energy levels to return to normal. But, during the process, muscles can feel tired, weak, and sore. Supplementing with Bioenergy RIBOSE will accelerate the energy recovery process and help overcome the impact of overexertion.

When energy demand continually outstrips supply, such as in chronic conditions associated with many diseases or in repeated bouts of high-intensity exercise, the natural processes of energy recovery may not be able to keep up. In these conditions, the metabolic support offered by Bioenergy RIBOSE will help tissue rebuild the energy it needs to function at a higher level. This may mean higher exercise tolerance, better oxygen utilization and ventilatory efficiency, and a better quality of life.

Decades of research have shown how vital Bioenergy RIBOSE is to energy health and wellness. Bioenergy has contributed significantly to this scientific foundation with research focused on heart disease, chronic muscle disease, aging, and even athletic performance and recovery. This research has proven the benefit of Bioenergy RIBOSE in energy synthesis and salvage, tissue function, and overall health and wellness. Bioenergy RIBOSE is the only compound the body can use to regulate the important function of energy synthesis and salvage. No other natural bioactive compound - or ethical synthetic drug - can perform this vital metabolic function.

Bioenergy RIBOSE is safe, effective and patent protected. Bioenergy has a family of issued and pending patents covering all known applications for ribose in nutrition, medicine, and veterinary healthcare. Information on the science of Bioenergy RIBOSE is also available.

Bioenergy RIBOSE™ Suggested References

Published research shows that Bioenergy RIBOSE may be an effective adjunct in promoting cardiovascular, skeletal muscle, and neurological health. In the heart and with heart patients, D-ribose has been found effective in restoring energy, improving ventilatory efficiency, oxygen uptake, stroke volume, diastolic function, physical performance, and quality of life. In neuromuscular disease, D-ribose helps to reduce pain, overcome fatigue, increase exercise tolerance, and help patients live more normal, active lives.

To download ALL abstracts on the following list click here.

Click a listing to review the abstract of published article

  1. Andreoli S. Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatric Res 1989;25(1):97-100.

  2. Angello D, R Wilson, D Gee, N Perlmutter. Recovery of myocardial function and thallium 201 redistribution using ribose.Am J Card Imag 1989;3(4):256-265.

  3. Asimakis G, J Zwischenberger, K Inners-McBride, L Sordahl, V Conti. Postischemic recovery of mitochondrial adenine nucleotides in the heart.Circ 1992;85(6):2212-2220.

  4. Baldwin D, E McFalls, D Jaimes, P Fashingbauer, T Nemzek, H Ward. Myocardial glucose metabolism and ATP levels are decreased two days after global ischemia.J Surg Res 1996;63:35-38.

  5. Befera N, A Rivard, D Gatlin, S Black, J Zhang, JE Foker. Ribose treatment helps preserve function of the remote myocardium after myocardial infarction.J Surg Res 2007;137(2):156.

  6. Brault JJ, RL Terjung. Purine salvage to adenine nucleotides in different skeletal muscle fiber types.J Appl Physiol 2001;91:231-238.

  7. Carter O, D MacCarter, S Mannebach, J Biskupiak, G Stoddard, EM Gilbert, MA Munger. D-Ribose improves peak exercise capacity and ventilatory efficiency in heart failure patients.JACC 2005;45(3 Suppl A):185A.

  8. Chatham J, R Challiss, G Radda, A Seymour. Studies of the protective effect of ribose in myocardial ischaemia by using 31P-nuclear magnetic resonance spectroscopy.Biochem Soc Proc 1985;13:885-888.

  9. Clay MA, P Stewart-Richardson, D Tasset, J Williams. Chronic alcoholic cardiomyopathy: Protection of the isolated ischemic working heart by ribose.Biochem Internat 1988;17(5):791-800.

  10. Cohen M, R Charney, R Hershman, V Fuster, R Gorlin, X Francis. Reversal of chronic ischemic myocardial dysfunction after transluminal coronary angioplasty.JACC 1988;12(5):1193-1198.

  11. Dodd SL, CA Johnson, K Fernholz, JA St.Cyr. The role of ribose in human skeletal muscle metabolism.Med Hypoth 2004;62(5):819-824.

  12. Dow J, S Nigdikar, J Bowditch. Adenine nucleotide synthesis de novo in mature rat cardiac myocytes.Biochim Biophys Acta 1985;847(2):223-227.

  13. Einzig S, JA St.Cyr, R Bianco, J Schneider, E Lorenz, J Foker. Myocardial ATP repletion with ribose infusion.Pediatr Res 1985;19:127A.

  14. Einzig S, J St. Cyr, J Schneider, R Bianco, J Foker. Maintained myocardial ATP with long term ribose.Pediatr Res 1986;20(4 pt 2):169A.

  15. Gao W, Y Liu, E Marban. Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle.Circ 1996;94: 2597-2604.

  16. Gebhart B, J Jorgenson. Benefit of ribose in a patient with fibromyalgia.Pharm 2004;24(11):1646-1648.

  17. Geisbuhler T, T Schwager. Ribose-enhanced synthesis of UTP, CTP, and GTP from parent nucleosides in cardiac myocytes.J Mol Cell Cardiol 1998;30(4):879-887.

  18. Goncalves RP, GC Bennet, CP Leblond. Fate of 3H-ribose in the rat as detected by autoradiography.Anat Rec 1969;165:543-557.

  19. Gradus-Pizlo I, SG Sawada, S Lewis, S Khouri, DS Segar, R Kovacs, H Feigenbaum. Effect of D-ribose on the detection of the hibernating myocardium during the low dose dobutamine stress echocardiography.Circ 1999;100(18):3394.

  20. Grant GF, RW Gracey. Therapeutic nutraceutical treatments for osteoarthritis and ischemia.Exp Opin Ther Patents 2000;10(1): 1-10.

  21. Griffiths JC, JF Borzelleca, J St. Cyr. Sub-chronic (13-week) oral toxicity study with D-ribose in Wistar rats.Food Chem Toxicol 2007;45(1):1440152.

  22. Griffiths JC, JF Borzelleca, J St. Cyr. Lack of oral embryotoxicity/teratogenicity with D-ribose in Wistar rats.Food Chem Toxicol 2007; 45(3):388-395.

  23. Gross G, J Auchampac. Role of ATP dependent potassium channels in myocardial ischaemia.Cardiovasc Res 1992;26:1011-1016.

  24. Gross M, S Reiter, N Zollner. Metabolism of D-ribose administered to healthy persons and to patients with myoadenylate deaminase deficiency.Klin Wochenschr 1989;67:1205-1213.

  25. Gross M, B Dormann, N Zollner. Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency.Klin Wochenschr 1991;69:151-155.

  26. Haas G, L DeBoer, E O'Keefe, R Bodenhamer, G Geffin, L Drop, R Teplick, W Daggett. Reduction of postischemic myocardial dysfunction by substrate repletion during reperfusion.Circ 1984;70:165-174.

  27. Harmsen E, PP de Tombe, JW de Jong, PW Achterberg. Enhanced ATP and GTP synthesis from hypoxanthine or inosine after myocardial ischemia.Am J Physiol 1984;246 (1 Pt 2):H37-43.

  28. Hegewald MG, RT Palac, D Angello, NS Perlmutter, RA Wilson. Ribose infusion accelerates thallium redistribution with early imaging compared with late 24-hour imaging without ribose.J Am Coll Cardiol 1991;18:1671-1681.

  29. Hellsten Y, L Skadgauge, J Bangsbo. Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans.Am J Physiol 2004;286(1):R182-R188.

  30. Ibel H, HG Zimmer. Metabolic recovery following temporary regional myocardial ischemia in the rat.J Mol Cell Cardiol 1986;18(Suppl 4):61-65.

  31. Illien S, H Omran, D MacCarter, J St. Cyr. Ribose improves myocardial function in congestive heart failure.FASEB J 2001;15(5):A1142.

  32. Ingwall JS. ATP and the Heart. Kluwer Academic Publishers, Boston, Massachusetts. 2002.

  33. Ingwall JS, RG Weiss. Is the failing heart energy starved? On using chemical energy to support cardiac function.Circ Res 2004;95(2):135-45.

  34. Kalsi K, R Smolenski, M Yacoub. Effects of nucleoside transport inhibitors and adenine/ribose supply on ATP concentration and adenosine production in cardiac myocytes.Moll Cell Biochem 1998;180(1-2):193-199.

  35. Karnicki K, C Johnson, J St. Cyr, D Ericson, G Rao. Platelet storage solution improves the in vitro function of preserved platelet concentrate.Vox Sang 2003;85: 262-268.

  36. Keith M. Increased oxidative stress in patients with congestive heart failure.J Am Coll Cardiol 1998;31(6):1352-1356.

  37. Koumi S, R Martin, R Sato. Alterations in ATP-sensitive potassium channel sensitivity to ATP in failing human hearts.Am J Physiol 1997;272(41):H1656-H1665.

  38. Lanoue K, J Watts, C Koch. Adenine nucleotide transport during cardiac ischemia.Am J Physiol 1981;24:H663-H671.

  39. Lewandowski E, X Yu, K LaNoue, L White, C Doumen, M O'Donnell. Altered metabolic exchange between subcellular compartments in intact postischemic rabbit hearts.Circ Res 1997;81:165-175.

  40. Lortet S, HG Zimmer. Functional and metabolic effects of ribose in combination with prazosin, verapamil and metroprolol in rats in vivo.Cardiovasc Res 1989;23:702-708.

  41. Mahoney J, E Sako, K Seymour, C Marquardt, J Foker. A comparison of different carbohydrates as substrates for the isolated working heart.J Surg Res 1989;47:530-534.

  42. Mahoney J. Recovery of postischemic myocardial ATP levels and hexosemonophosphate shunt activity.Med Hypoth 1990;31:21-23.

  43. Mauser M, H Hoffmeister, C Nienaber, W Schaper. Influence of ribose, adenosine and "AICAR" on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog.Circ Res 1985;56:220-230.

  44. McDonagh TA, C Morrison, A Lawrence. Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population.Lancet 1997;35:829-833.

  45. Muller C, H Zimmer, M Gross, U Gresser, I Brotsack, M Wehling, W Pliml. Effect of ribose on cardiac adenine nucleotides in a donor model for heart transplantation.Eur J Med Res 1998;3:554-558.

  46. Omran H, S Illien, D MacCarter, JA St. Cyr. Ribose improves myocardial function and quality of life in congestive heart failure patients.J Mol Cell Cardiol 2001;33(6):A173.

  47. Omran H, S Illien, D MacCarter, JA St. Cyr, B Luderitz. D-Ribose improves diastolic function and quality of life in congestive heart failure patients: A prospective feasibility study.Eur J Heart Failure 2003;5:615-619.

  48. Omran H, D MacCarter, JA St. Cyr, B Luderitz. D-Ribose aids congestive heart failure patients.Exp Clin Cardiol 2004;9(2):117-118.

  49. Pasque M, T Spray, G Peliom, P van Trigt, R Peyton, W Currie, A Wechsler. Ribose-enhanced myocardial recovery following ischemia in the isolated working rat heart.J Thorac Cardiovasc Surg 1982;83(3):390-398.

  50. Pasque M, A Wechsler. Metabolic intervention to affect myocardial recovery following ischemia.Ann Surg 1984;200:1-10.

  51. Patton BM. Beneficial effect of D-ribose in patient with myoadenylate deaminase deficiency.Lancet 1982 May8;1(8280):1701.

  52. Pauly D, C Pepine. D-Ribose as a supplement for cardiac energy metabolism.J Cardiovasc Pharmacol Ther 2000;5(4):249-258.

  53. Pauly D, C Johnson, JA St. Cyr. The benefits of ribose in cardiovascular disease.Med Hypoth 2003;60(2):149-151.

  54. Pauly DF, CJ Pepine. Ischemic heart disease: Metabolic approaches to management.Clin Cardiol 2004;27(8):439-441.

  55. Perkowski D, S Wagner, A Marcus, J St. Cyr. Pre-surgical loading of oral d-ribose improves cardiac index in patients undergoing "off pump" coronary artery revascularization.FASEB J 2005;19(4)Part1:A695.

  56. Perkowski D, S Wagner, A Marcus, J St. Cyr. D-Ribose improves cardiac indicies in patients undergoing "off" pump coronary arterial revascularization.J Surg Res 2007;137(2):295.
  57. Perkowski D, S Wagner, A Marcus, J St. Cyr. Ribose enhances ventricular function following off pump coronary artery bypass surgery.J Alt Comp Med 2005;11(4):745

  58. Perlmutter NS, RA Wilson, DA Angello, RT Palac, J Lin, BG Brown. Ribose facilitates thallium-201 redistribution in patients with coronary artery disease.J Nucl Med 1991;32:193-200.

  59. Pliml W, T von Arnim, A Stablein, H Hofmann, HG Zimmer, E Erdmann. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease.Lancet 1992;340:507-510.

  60. Pliml W, T von Arnim, C Hammer. Effects of therapeutic ribose levels on human lymphocyte proliferation in vitro.Clin Investig 1993;71(10):770-773.

  61. Pouleur H. Diastolic dysfunction and myocardial energetics.Eur Heart J 1990;11(Supp C):30-34.

  62. Redfield MM, SJ Jacobson, JC Burnett, DW Mahoney, KR Bailey, RJ Rodenheffer. Burden of systolic and diastolic ventricular dysfunction in the community. Appreciating the scope of the heart failure epidemic.JAMA 2003;289(2):194-202.

  63. Reibel D, M Rovetto. Myocardial ATP synthesis and mechanical function following oxygen deficiency.Am J Physiol 1978;234(5):H620-H624.

  64. Reimer K, M Hill, R Jennings. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs.J Mol Cell Cardiol 1981;13:229-239.

  65. Salerno C, M Celli, R Finocchiaro, P D'Eufemia, P Iannetti, C Crifo, O Giardini. Effect of D-Ribose Administration to a patient with inherited deficit of Adenylosuccinase.Adv Exp Med Biol 1998;431:177-180.

  66. Salerno C, P D'Eufemia, R Finocchiaro, M Celli, A Spalice, C Crifo, O Giardini. Effect of D-ribose on purine synthesis and neurological symptoms in a patient with adenylsuccinase deficiency.Biochim Biophys Acta 1999;1453:135-140.

  67. Sami H, N Bittar. The effect of ribose administration on contractile recovery following brief periods of ischemia.Anesthesiol 1987;67(3A):A74.

  68. Schneider J, J St. Cyr, J Mahoney, R Bianco, W Ring, J Foker. Recovery of ATP and return of function after global ischemia.Circ 1985;72(4 pt 2):III-298.

  69. Segal S, J Foley. The metabolism of D-ribose in man.J Clin Invest 1958;37:719-735.

  70. Seifert J, A Subudhi, M-X Fu, K Riska, J John. The effects of ribose ingestion on indices of free radical production during hypoxic exercise.Free Rad Biol Med 2002;33(suppl 1):S269.

  71. Sharma R, M Munger, S Litwin, O Vardeny, D MacCarter, JA St. Cyr. D-Ribose improves Doppler TEI myocardial performance index and maximal exercise capacity in stage C heart failure.J Mol Cell Cardiol 2005;38(5):853.

  72. Siess M, U Delabar, H Seifart. Cardiac synthesis and degradation of pyridine nucleotides and the level of energy-rich phosphates influenced by various precursors.Adv Myocardiol 1983;4:287-308.

  73. Skadhauge-Jensen L, J Bangsbo, Y Hellsten. Availability of ribose is limiting for ATP resynthesis in human skeletal after high-intensity training.Med Sci Sport Exc 2001;33(5).

  74. Smolenski R, K Kalsi, M Zych, Z Kochan, M Yacoub. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.J Mol Cell Cardiol 1998;30(3):673-683.

  75. Smolenski R, K Kalsi, M Zych, Z Kochan, M Yacoub. Effects of adenine/ribose supply on adenosine production and ATP concentration in adenosine kinase-inhibited cardiac cells.Adv Exp Med Biol 1998;431:385-388.

  76. Smolenski R, J Jayakumar, AM Seymour, MH Yacoub. High-energy phosphate changes in the normal and hypertrophied heart during cardioplegic arrest and ischemia.Adv Exp Med Biol 1998;431:286-286.

  77. St. Cyr J, R Bianco, J Foker. Myocardial high-energy phosphate levels in cardiomyopathic turkeys.J Surg Res 1986;41:256-259.

  78. St. Cyr J, H Ward, J Kriett, D Alyono, S Einzig, R Bianco, R Anderson, J Foker. Long-term model for evaluation of myocardial metabolic recovery following global ischemia.Adv Exp Med Biol 1986;194:401-441.

  79. St. Cyr J, R Bianco, J Schneider, J Mahoney, K Tveter, S Einzig, J Foker. Enhanced high energy phosphate recovery with ribose infusion after global myocardial ischemia in a canine model.J Surg Res 1989;46(2):157-162.

  80. Swain JL, R Sabina, P McHale, J Greenfield, E Holmes. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog.Am J Physiol 1982;242:H818-H826.

  81. Taegtmeyer H, A Roberts, A Raine. Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function.JACC 1985;6(4):864-870.

  82. Taegtmeyer H, L King, B Jones. Energy substrate metabolism, myocardial ischemia and targets for pharmacotherapy.Am J Cardiol 1998;82(5A):54K-60K.

  83. Taegtmeyer H. Metabolism - The lost child of cardiology.J Am Coll Cardiol 2000;36(4):1386-1388.

  84. Tan ZT. Ruthenium red, ribose and adenine enhance recovery of reperfused rat heart.Coronary Artery Dis 1993;4(3):305-309.

  85. Teitelbaum JE, C Johnson, J St Cyr. The use of D-ribose in chronic fatigue syndrome and fibromyalgia: a pilot study.J Altern Complement Med. 2006;12(9):857-62.

  86. Tullson PC, RL Terjung. Adenine nucleotide synthesis in exercising and endurance-trained skeletal muscle.Am J Physiol 1991;261:C342-C347.

  87. Tveter K, J St. Cyr, J Schneider, R Bianco, J Foker. Enhanced recovery of diastolic function after global myocardial ischemia in the intact animal.Pediatr Res 1988;23:226A.

  88. Vance R, S Einzig, K Kreisler, J St. Cyr. D-Ribose maintains ejection fraction following aortic valve surgery.FASEB J 2000;14(4):A419.

  89. Van Gammeren D, D Faulk, J Antonio. The effects of four weeks of ribose supplementation on body composition and exercise performance in healthy, young male recreational bodybuilders: A double-blind, placebo-controlled trial.Curr Ther Res 2002;63(8):486-495.

  90. Vijay N, D MacCarter, M Washam, J St.Cyr. Ventilatory efficiency improves with d-ribose in congestive Heart Failure patients.J Mol Cell Cardiol 2005;38(5):820.

  91. Wagner DR, U Gresser, N Zollner. Effects of oral ribose on muscle metabolism during bicycle ergometer in AMPD-deficient patients.Ann Nutr Metab 1991;35:297-302.

  92. Wallen JW, MP Belanger, C Wittnich. Preischemic administration of ribose to delay the onset of irreversible ischemic injury and improve function: studies in normal and hypertrophied hearts.Can J Physiol Pharmacol 2003;81:40-47.

  93. Ward H, J St. Cyr, J Cogordan, D Alyono, R Bianco, J Kriett, J Foker. Recovery of adenine nucleotide levels after global myocardial ischemia in dogs.Surgery 1984;96(2):248-255.

  94. Williamson DL, PM Gallagher, MP Goddard, SW Trappe. Effects of ribose supplementation on adenine nucleotide concentration in skeletal muscle following high-intensity exercise.Med Sci Sport Exc 2001;33(5 suppl).

  95. Wilson R, D MacCarter, J St. Cyr. D-Ribose enhances the identification of hibernating myocardium.Heart Drug 2003:3:61-62.

  96. Wyatt D, S Ely, R Lasley, R Walsh, R Mainwaring, R Berne, R Mentzer. Purine-enriched asanguineous cardioplegia retards adenosine triphosphate degradation during ischemia and improves postischemic ventricular function.J Thorac Cardiovsac Res 1989;97:771-778.

  97. Zarzeczny R, JJ Brault, KA Abraham, CR Hancock, RL Terjung. Influence of ribose on adenine salvage after intense muscle contractions.J Appl Physiol 2001;91:1775-1781.

  98. Zimmer HG, E Gerlach. Stimulation of myocardial adenine nucleotide biosynthesis by pentoses and pentitols.Pflugers Arch 1978;376:223-227.

  99. Zimmer HG. Restitution of myocardial adenine nucleotides: Acceleration by administration of ribose.J Physiol (Paris) 1980;76:769-775.

  100. Zimmer HG, H Ibel, G Steinkopff. Studies on the hexose monophosphate shunt in the myocardium during development of hypertrophy.Adv Myocardiol 1980;1:487-492.

  101. Zimmer H-G, H Ibel, G Steinkopff, G Korb. Reduction of the isoproterenol-induced alterations in cardiac adenine nucleotides and morphology by ribose.Science 1980;207:319-321.

  102. Zimmer HG. Normalization of depressed heart function in rats by ribose.Science 1983;220:81-82.

  103. Zimmer HG, H Ibel. Effects of ribose on cardiac metabolism and function in isoproterenol-treated rats.Am J Physiol 1983;245:H880-H886.

  104. Zimmer HG, H Ibel. Ribose accelerates the repletion of the ATP pool during recovery from reversible ischemia of the rat myocardium.J Mol Cell Cardiol 1984;16:863-866.

  105. Zimmer HG, H Ibel, G Steinkopff. Ribose prevents the propranolol-induced reduction of myocardial adenine nucleotide biosynthesis.Adv Exp Med Biol 1984;165(Pt B):477-481.

  106. Zimmer HG, H Ibel, U Suchner. Ribose intervention in the cardiac pentose phosphate pathway is not species-specific.Science 1984;223:712-714.

  107. Zimmer HG, W Zierhut, G Marschner. Combination of ribose with calcium antagonist and beta-blocker treatment in closed-chest rats.J Mol Cell Cardiol 1987;19:635-639.

  108. Zimmer HG, PA Martius, G Marschner. Myocardial infarction in rats: Effects of metabolic and pharmacologic interventions.Basic Res Cardiol 1989;84:332-343.

  109. Zimmer HG. The oxidative pentose phosphate pathway in the heart: regulation, physiological significance and clinical implications.Basic Res Cardiol. 1992; 87: 3003-316.

  110. Zimmer HG. Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart.Mol Cell Biochem 1996;160-161:101-109.

  111. Zimmer HG. Significance of the 5-phosphoribosyl-1-pyrophosphate pool for cardiac purine and pyrimidine nucleotide synthesis: studies with ribose, adenine, inosine, and orotic acid in rats.Cardiovasc Drug Ther 1998;12(Suppl 2):179-187.

  112. Zollner N, S Reiter, M Gross, D Pongratz, CD Reimers, K Gerbitz, I Paetzke, T Deufel, G Hubner. Myoadenylate deaminase deficiency: successful symptomatic therapy by high dose oral administration of ribose.Klin Wochenschr 1986;64:1281-1290.
Go to top of page